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MOTION OF A GAS IN A CYCLONE HEAT EXCHANGER 

V. A. Kirakosyan, E. Yu. Lavrovskaya, and A. P. Baskakov UDC 536.27:532.529.5 

A semi-empirical theory of turbulence is used to obtain relations for calcula- 
tion of the field of gas velocity in the flow core and boundary layer in a 
cyclone chamber. To close the system of Navier-Stokes equations, the apparent 
shear stress is represented in the form of the gradient dependence in circula- 
tion. The relations for calculating the tangential component of velocity were 
derived using experimental data on the qualitative character of the distribu- 
tion of apparent shear stress over the radius of the cyclone. 

In order to devise methods of calculating heat- and mass-transfer processes between 
a gas and particles in cyclone heat exchangers, it is necessary to thoroughly examine the 
aerodynamic structure of the twisted disperse flow - including the velocity field of the 
gas in the cyclone. Most investigations of the aerodynamics of cyclone chambers have been 
experimental studies of the distribution of the components of gas velocity in the core of 
the flow. Different empirical relations have been proposed for calculation mainly of the 
tangential component of velocity. There has been little study of the boundary-layer gas 
flow in cyclones, even though the dispersed material moves mainly in this region in cyclone 
chambers with "dry" walls. In the present study, we attempt to use a semi-empirical theory 
of turbulence to obtain relations for calculating the velocity field of the gas flow through- 
out the volume of a cyclone chamber. 

We will represent the running parameters of the flow as consisting of the time-averaged 
radial u, axial w, and tangential v components of velocity and the fluctuation components 
u', w', v'. Then the Navier-Stokes equations are augmented by expressions for the Reynolds 
stresses. We will write this equation in cylindrical coordinates in the tangential direction, 
taking into account the symmetry of the twisted flow relative to the axis of the cyclone: 

u a T  + Ox + - - =  ~ + , ( 1 )  
�9 r ' aX 

where Cr ~ = -pu'v', ~x = -pv'w' are components of the turbulent shear stress. 

Here, the continuity equation will have the form 

l Our Ow == O. ( 2 )  

r Or + O--x 

To close the system of Navier-Stokes equations in the theory of turbulent motion [I], 
empirical relations are introduced to link the apparent shear stress with the time-averaged 
velocities. For Tr~ , this connection is usually expressed by one of two methods: 

i) by generalization of the Karman similarity hypothesis to curvilinear flows 

%~ ~ p ~ r - - ~ -  r ; ( 3 )  

VNllenergotsvetmet, Sverdlovsk. Translated from Inzhenerno-fizicheskii Zhurnal, Vol. 
60, No. 2, pp. 277-284, February, 1991. Original article submitted October 31, 1989. 

224 0022-0841/91/6002-0224512.50 �9 1991 Plenum Publishing Corporation 



2) by making use of Prandtl's theory of momentum transfer 

1 d 
-- -- (vr). (4) 

z~  = P ~ a r  dr 

The use  o f  Eq. (3 )  w i t h  v t = c o n s t  y i e l d s  good r e s u l t s  in  t h e  s t u d y  o f  s l i g h t l y  t w i s t e d  
t u r b u l e n t  j e t s  [2 ,  3 ] .  However,  i t  was shown in  [4] t h a t  t h e  use  o f  t h i s  e x p r e s s i o n  f o r  
a p l a n e  v o r t e x  l e a d s  t o  p a r a d o x i c a l  r e s u l t s .  F i r s t  o f  a l l ,  i t  s u g g e s t s  t h a t  no e n e r g y  i s  
dissipated in the rigid rotation of the gas (in the axial region of the twisted flow). This 
could be possible only due to the appreciabl e turbulence in this region. Secondly, the 
use of Eq. (3) in the given case also indicates that energy is dissipated during nonvortical 

motion. 

The velocity profiles of a swirled gas flow in a cyclone were calculated using an expres- 
sion associated with (3) 

Tr~ = p/a r ~ - r  (5)  

where  l i s  t h e  mix ing  l e n g t h .  Here ,  we a l s o  made u se  o f  t h e  a p p r o x i m a t i o n  o f  t h e  t a n g e n t i a l  
component  o f  v e l o c i t y  p r o p o s e d  in  [ 4 ] .  I t  was found  t h a t  t h e  r e s u l t i n g  d i s t r i b u t i o n s  o f  
t h e  a x i a l  and r a d i a l  v e l o c i t i e s  d e v i a t e d  f rom t h e  e x p e r i m e n t a l  d a t a  ( a t  q § 1, u § ~, 
w § - ~ ) .  Here ,  t h e  change  in  v t '  o v e r  t h e  r a d i u s  o f  t h e  c y c l o n e  i s  o f  an a l t e r n a t i n g  c h a r a c -  
t e r .  The q u a n t i t y  zr~ t a k e s  a v a l u e  o f  z e r o  in  t h e  t r a n s i t i o n a l  r e g i o n  be tween  q u a s i -  
p o t e n t i a l  and q u a s i - r i g i d  r o t a t i o n  and i n c r e a s e s  by 1-2 o r d e r s  in  t h e  t r a n s i t i o n  from t h e  
q u a s i - r i g i d  r o t a t i o n  zone  t o  t h e  q u a s i - p o t e n t i a l  r o t a t i o n  zone .  Such a c h a r a c t e r  o f  d i s t r i b u -  
t i o n  o f  v t and z~, i s  u n l i k e l y .  Thus,  t h e r e  i s  no f o u n d a t i o n  f o r  t h e  u se  o f  Eq. (5)  t o  c l o s e  
t h e  s y s t e m  o f  N a v i e r - S t o k e s  e q u a t i o n s .  I n  [ 4 ] ,  t h e  s h e a r  s t r e s s  in  t h e  t u r b u l e n t  c o r e  o f  
a r o t a t i n g  f l o w  was r e p r e s e n t e d  in  t h e  form o f  t h e  g r a d i e n t  dependence  on c i r c u l a t i o n  
F =vr 

~ = •  = p l  2[ 1 O 
[--OT-r J r Or ] '  (6) L 

where K is a quantity which characterizes the turbulence structure of the twisted flow and 
l = Kr for the flow core. 

In contrast to (3) and (5), it follows from (6) that T~ = 0 for a plane vortex with 
potential rotation of the gas. With rigid rotation, Tr~ = 4pVm~2(r/rm )2, i.e., in this 
region the radial distribution of shear stress is described by a quadratic law. The values 
of zr~ calculated with (6) agree with the experimental data in [4]. 

As regards the components of the tensor of shear stress ~x , by analogy with rectilinear 
motion of the gas we can write [5] 

�9 10 ) T~.~ ---- PX~ . (7 )  

In the core of a twisted flow, it can be assumed with a high degree of confidence that 
<< vt and v << vx~. Inserting (4) and (7) into (i), we obtain 

u3(vr) Ov 1 8(T,~r 2) O ( 8v] 
r Or + ~ v  - - -  4-  ~,~, Ox (8) 

In the general case, the component of the shear-stress tensor "r,,~ is a function of the 
radial r and axial x coordinates. This function can be represented in the form 

then from (6) we obtain 

"%p == ~r @ (x) f2 (r), 

~ (~) f (~), (9) l V T 

where  q = r / R c ;  ~ = x/L c. 
P r o c e e d i n g  on t h e  b a s i s  o f  e x p e r i m e n t a l  d a t a  on t h e  c h a r a c t e r  o f  t h e  d i s t r i b u t i o n  o f  

zr~ [ 6 ] ,  we can r e p r e s e n t  t h e  f u n c t i o n  f ( q )  f o r  t h e  c o r e  o f  t h e  f low in  t h e  form 
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Fig. i. Comparison of theoretical profiles of tangential velocity 
for the flow core and experimental data from [4]: I) m = 2.07; 2) 
2.25; 3) 2.46; 4) 2.96; solid curves show results calculated from 
(12); dashed curves show results obtained from the Shtym formula [4]. 

f (0) = ~ (%o-- ~/)< (10) 

S i n c e  t h e  r o t a t i o n  o f  t h e  g a s  i n  t h e  a x i a l  r e g i o n  i s  s i m i l a r  t o  t h e  r o t a t i o n  o f  a r i g i d  
b o d y ,  we c a n  p r o p o s e  a s  a f i r s t  a p p r o x i a m t i o n  t h a t  t h e  m i x i n g  l e n g t h  1 = Kr i n  t h i s  r e g i o n .  
Then  k e e p i n g  i n  m i n d  ( 1 0 )  a n d  t h e  f a c t  t h a t  v = 0 a t  D = 0 ,  we o b t a i n  t h e  f o l l o w i n g  f o r  
t a n g e n t i a l  v e l o c i t y  f r o m  ( 9 )  

~(~) 
/ 

• . ' /  n + 1  n - ~ 2  n q - 3  (ii) 

Experiments show [4] that as a first approximation we can take ~($) = i away from the end 
regions of the cyclone. Considering that v = v m and q = qm, we can easily use (ii) to de- 
termine the value of the parameter n: 

q ~ s 

where 

q - 1 3 , 5 ( a - - 1 )  ~ ; Q =  + - ; 

7 - -  a ~m 
P - -  3 ( a - -  1) a =  . ~co 

Then  f i n a l l y  
2 ~]z 

v _  v 
2 

n % - I  n - l - 2  n + 3  

(12) 

The characteristic radii of the flow qco and qm and the maximum value of tangential velocity 
v m can be determined by using the empirical relations proposed in [4]. Knowing the value 

of these parameters, we Can readily determine the quantity i/K4~wa/p. Good agreement was 
obtained between Eq. (12) and the empirical relation constructed by A. N. Shtym for tangen- 
tial velocity (Fig. i). The figure also shows that Eq. (12) agrees well with the experimen- 
tal data in [5]. Using (12), we obtain the following formula from (8) to determine the 
radial component of the gas in the flow core 
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~ =  U =2• (_~__)n('qeo ~ ~ ) [ ~ n - + - 1 ) - - ~ ( n  + 3)].. (13)  

n + l  n + 2  n + 3  

while with allowance for (13) we obtain the below expression from (2) to determine the axial 

velocity for the gas at 0 ~ q ~ qco 

(14) ~ _  w _ 2 L e x  a ~ - ~ [ ( n + 3 ) z ~ z - - 2 ~ ( n + 2 ) 2 + ~ . o ( n + I p ]  
v~ R~ - - - - ~  ...... ~ ] x ~ + G ( n ) .  

~n [ 'n,6o _ __ 2%~m ._{_ 
q~[ n +  1 n + 2  n + 3  J 

The aerodynamics of the swirled flow in the wall region of the chamber, of thickness 
= Rc(I - ~co), differs from the aerodynamics of the core. We adopt the mixing length 

[ = K(R c - r) within the boundary layer and we designate the coordinate of the boundary 
of the laminar sublayer as q0. Then in accordance with the chief postulates of the semi- 

empirical turbulence theory we can write [7]: 

_ K~( I - ~)~ [~ (~n)]: (15) 
~h ~ ~1 < 00, v 2 ~1 z , 

p , ~  L O n J  

r l o < ~ l ~ l ,  ~ _  v [O(u~)] (16) 
2 pure Rcvm L &l ] 

v-n=no+O = v--n=no-O ; "rn=no+o = %=no-o; (17)  

/ 
-a~-n j,~=~o+O = ,v~ \-gn-n ;~=,,o-O (18) 

We represent the function �9 = "[(rl) in the form 

"~ ( n - -  ~>?/4 
~--~d (19)  

Having integrated (15) and (16) with allowance for (19), we obtain the distribution of tan- 

gential velocity in the wall region of the cyclone: at Dco ~ q ~ q0 

Ve o ~ t q- ~eoKVco g p L I - - ' % o  1---~-c d -c T 1 - - ~ , e o } j I '  

V = Vco at  1] ~- I~o 

w h i l e  a t  q0 <- q <- 1 ( h a v i n g  in  mind t h a t  t h e  t h i c k n e s s  o f  t h e  l a m i n a r  s u b l a y e r  i s  s m a l l  
enough so t h a t  we can t a k e  q0 ~ 1) :  

v_XWa Re (l__n). (21) 
p 'VV m 

( 1 5 - 1 6 )  and c o n d i t i o n  ( 1 9 ) ,  we f i n d  t h e  t h i c k n e s s  o f  t h e  l a m i n a r  s u b l a y e r  Having used Eqs. 

(20) 

where 

~}o~- I 
K1 1 --~1 co (22)  

K CReco ' 

! (l__c_ik 
c -  1 /  ~ .  R%o 

V~co I / p ' v 

We believe that there is a certain analogy between the rotation of the gas in the boundary 
region of the cyclone and the motion of a gas in a turbulent boundary layer in the case of 
flow past a plate. Thus, we can write [7] 

V=o, p 2 / - v l .  / ~ ' ' 
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where for flow about the plate C o = 0.24, m = 0.125, K = 0.4. With allowance for this, 
we finally obtain the following to determine the field of the tangential component of gas 
velocity in the boundary region of the cyclone 

at Dco ~ N <- N0 

- - -  1 q -  I n  

�9 o 4f i-Lo 
C O  

atq0 <-q4 1 

(23)  

v C~'~ ~-2., 1 - - ~  , (24) 
-- Kec~ 1 - -  0 co 

where Vco is determined from (12) with n = qco" 

The values of the parameters C 0, m, and K were determined by comparing distributions 
of tangential gas velocity in the cyclone boundary region calculated from (23) and estab- 
lished experimentally [8]. Tangential velocity was measured in [8] in a cyclone R c = 0.07 
m with Reco = 8100. Here, the thickness of the boundary lay,er changed within the range 
8-25 mm, i.e., 0.65 <- nco <- 0.885. It is evident from Fig. 2 that at C o = 0.231, m = 0.125, 
and K = 0.275, the theoretical curves qco = 0.65 and 0.885 completely envelope the expermental 
points. For comparison, Fig. 2 shows curves of velocity distribution in the boundary layer 
that were proposed in [i] for a plate (curve 4) and in [9] for a cyclone (curve 3). 

Using (23), under the condition that 3v/Sx = 0 we can use (i-2) to determine the radial 
and axial components of gas velocity in the boundary layer: 

X u _ 2KCo R%o '~' 0,~ , 
~)trt 

:< , (25) [ 1 20ra 1 'rl~ 2 ] )2 
n §  (n+2)Oeo + - ( ~ )  0 ( 1 - - 0  n q - 3  co 

= _ 2 Lc KCoR  C( 
Vm R c ~, 0m 

I I '1 n + 1 n q - ~  q- - - "  (60 - -  40e6- 90 a q- 8~10co-- 0c0)~ 
n ~ - 3  ' (26)  

X [ 1 2 0~ ~ _ _ _ 1  ( 0 ~ 3 2  0 ( 1 - - 0 ) z  q-Cz(~). 

nq -  1 n q - 2  ~co  n ~ - 3  0co / _1 co 

I t  f o l l o w s  f rom t h e  c o n d i t i o n  f o r  t h e  j o i n i n g  o f  v e l o c i t y  p r o f i l e s  (14)  and (26)  a t  
q = qco t h a t  C~(q) = C2(q)  = C ( q ) .  Then 

I '  11 CoKe, Reeo ~- 
• = co n - ?  1 n q- 2 n q- 3 (27)  

I - - 0  co 

The constant of integration C(~) can be determined on the basis of the following consid- 
erations. At the end of the cyclone where the outlet for the gases is located (i.e., at 

= i), the axial component of velocity at i > N > qn is equal to zero. In the outlet open- 
ing itself, the motion of the gas can be represented as the superposition of two oppositely 
directed flows: the outgoing flow and the flow connected with infiltration. As a result 
of this superposition, a region occupied by an annular outgoing stream is formed in the 
outlet hole, while a region occupied by gas moving in the opposite direction is formed in 
the center. Having designated the boundary between these two regions as qb, we conditionally 
assign the velocity profile in the outlet hole by means of the function 

w t =  - -  A (0Kn - 0 K) (,1~" 6 -  rtK ). ( 2 8 )  

To determine k and K, we use the balance equations: 
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Fig .  2. Comparison o f  t h e o r e t i c a l  p r o f i l e s  o f  r e l a t i v e  t a n g e n t i a l  
velocity in the wall region of the cyclone (23) with experimental 
data from [8] and theoretical relations for a cyclone [9] and a plate 
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Fig. 3. Theoretical profile of radial gas velocity. 

Fig. 4. Theoretical profile of axial gas velocity: i) ~ = 0,2; 2) 
0.5; 3) 0.8.  

'111 

0 (29)  

~b 

0 ' (30) 

where Grev is the magnitude of the reverse axial stream. Having integrated and having 
divided (29) by (30), we obtain the equation 

Gg [ 1 l + a - K  a-~ ] _ a2! 1 t + a K  

2 K + 2  ~ 2 ( K + 1 )  2 K + 2  + 
r e v  

gK G + ] '  
where  a = qn /~b  and Grev must  be  d e t e r m i n e d  e x p e r i m e n t a l l y .  

S o l v i n g  t h i s  t r a n s c e n d e n t a l  e q u a t i o n  w i t h  a s s i g n e d  a and Grey ,  we f i n d  K and we d e t e r m i n e  
A from ( 2 9 ) .  We then  o b t a i n  
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at 0 g N < Dn" 

: I aK (31) , 1 l + a K  ~- 

c(~)=o at 'I~<~<I 

Figures 3 and 4 show the fields of the radial u and axial w components of gas velocity 
calculated from Eqs. (13-14), (25-26), and (31). The character of the distribution of u 
and w corresponds to the following pattern of gas flow in the core of a swirled flow in a 
cyclone chamber: 

in the axial region, a central reverse flow (w = 0) develops; this event is connected 
with the infiltration of gas through the outlet hole at the end of the cyclone and results 
in radial movement of gas from the center to the periphery (u > 0): 

an annular outgoing flow is formed in the middle of the cyclone chamber (0.35 g q 
0.65); here, gas travelling from the center and the periphery moves toward the outlet hole; 

a powerful reverse annular flow is formed at the boundary of the core of the twisted 
flow; the radial component of velocity in this zone is equal to zero; 

in the wall region, the gas moves toward the outlet hole. 

The above-described distribution of the components of gas velocity in a cyclone agrees 
with literature data [4] on the character of flow in a cyclone. Additional empirical data 
will be necessary for a more accurate comparison. On the whole, above-constructed relations 
(12-14) and (23-24) can be used to calculate the tangential, axial, and radial components 
of gas velocity in a cyclone. 

Notation. r, x, ~, radial, axial, and angular coordinates, m; u, w, v, radial, axial, 
and tangential components of velocity, m/sec; p, density of the gas, kg/ma; 9, ~t, molecular 
and turbulent kinematic viscosities of the gas, m2/sec; Rc, Lc, radius and length of the cy- 
clone, m; T, shear stress, N/m2; qco, relative radius of the boundary of the flow core; 
nm, relative radius corresponding to the maximum value of tangential velocity; Vco , tangen- 
tial velocity at the boundary of the flow core, m/sec; Vm, maximum value of tangential 
velocity of the gas, m/sec; Gg, gas flow rate, kg/sec. 
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